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Executive Summary

The Problem

Select the location of the next three oil production wells to be drilled in order to maximize the
production for the next two years using Machine Learning models.

Our Solution

Integrate expert knowledge, geostatistical methods, and uncertainty modelling into our

machine learning workflow to maximize the production of the following three wells to be
drilled

Our Learning Outcomes

e Actually, cleaning and preparing the data really takes more than % of the time in a ML
project.

e Expertise knowledge is a critical skill in every ML step. (Thanks to all our advisors in this
Hackathon for share their knowledge with us!)

e There is a big potential in the Oil and Gas industry , which is a highly productor of big data, to
solve problems by using ML techniques

Our Recommendation

e We have made some assumptions due to time constrain. However, in real life, we need to
consider things such as the drainage radius of each well, workovers, maintenances of
superficial facilities among other things that can affect the forecasting of oil production.
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1. Visualize, Cleaning and
Prepare the data

* Examine for missing and
| \ erroneous values

* Feature Imputation

l Raw Data
e Feature Selection

2. Machine Learning Model

3. Use the model to predict

Split the data in training and testing
Train the model

Test the model

Tunning Hyperparameters
Evaluation

Use the final model to predict the
production of our following wells
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Feature Imputation

1. Density
* K-Nearest Neighbors
2. Porosity
e Multilinear regression (Density, NPHI)
3. Acoustic Impedance Imputation
* Interpolation from the 2D MAP
4. Permeability Imputation
* Petrophysics equations (Karman-Kozeny relation)

Data Completeness
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Feature Imputation

Porosity Cross-plot
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Linear Regression
between NPHI and
Core Porosity

Multivariate Linear Regression to predict porosity as a function of Density and NPHI
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Feature Imputation
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Feature Ranking and Selection
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Decision Tree

Training

Training Data and Decision Tree Model
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Decision Tree

Testing data Prediction Accuracy before hyperparameter tunning

Decision Tree Prediction Accuracy
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Decision Tree

Final Model after hyperparameter tunning

Mean Squared Error on Testing = 37211.51 , Correlation Coefficient = ©0.96
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2021 —-2012=9 years
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Decision Tree

Proposed wells and forecast cumulative production
for the next two years

X Y unit Np
(ft) (ft) (bls)
88000 125500 Lower 1077407
88000 134000 Lower 627435

87500 131000 Lower 1077407
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Feedback

What did your team learn?
Machine Learning is a helpful tool to maximize value in oil and gas
projects in which we produce loads of data every day
How important is include expert knowledge in every ML step
"There ain't no such thing as a free lunch®
What did your team like?
The feedback and suggestion of all of the advisors

What could we do to improve next year?

The organization in general was awesome, we just like to suggest maybe
one day more to solve the problem



